Architecting Mass Indexing Pipelines with Modal and Vector Databases
A comprehensive technical analysis of building a serverless semantic search engine that indexes 5 million documents using distributed crawling, GPU-accelerated embeddings, and vector databases.
Traditional infrastructure struggles with the "bursty" nature of mass indexing. A crawler might sit idle for days, then require thousands of concurrent threads.
Serverless architecture with Modal for compute orchestration and Vector Databases for high-dimensional storage enables scale-to-zero efficiency.
92% cost reduction compared to traditional Kubernetes deployments while maintaining sub-200ms search latency and 15-minute index freshness.
Matrix multiplications require massive GPU parallelization
Embedding models are the new bottleneck
Approximate Nearest Neighbor algorithms for vectors
Provision for peak = pay for idle GPUs 95% of the time
Provision for average = massive latency spikes during peak
No GPU support, 15-minute timeouts, cold starts too slow for ML models
Per-second billing, GPU ephemerality, millisecond container launches
DocuVerse is a "Universal Documentation Search Engine" for developers. A single search bar that retrieves the most relevant technical answers using RAG, regardless of where the information lives.
| Metric | Value | Implications |
|---|---|---|
| Total Documents | 5,000,000 | Requires efficient bulk indexing strategies |
| Average Doc Size | 4 KB (~800 tokens) | Fits within standard embedding context windows |
| Update Velocity | ~200,000 docs/day | Incremental indexing must be robust |
| Vector Dimensions | 1,536 | OpenAI Ada-002 compatible, high-fidelity |
| Total Index Size | ~30 GB | Vectors + Metadata storage requirements |
| Target Latency | <200ms search, <15min freshness | Tight constraints on ingestion pipeline |
Beyond simple text search, DocuVerse constructs a graph of documentation relationships.
How many pages link to the React useEffect hook? This "Matrix Link" boosts
authoritative pages during vector retrieval.
Final_Score = (Vector_Similarity * 0.8) + (PageRank_Score * 0.2)
The DocuVerse engine is built on four pillars: Ingestion, Processing, Memory, and Interaction. Each component is designed for serverless execution with automatic scaling.
CPU-bound web crawling with politeness sharding and deduplication
GPU-accelerated embedding generation with intelligent batching
Serverless vector storage with bulk import and hybrid search
RAG pipeline with reranking and authority-boosted retrieval
Building a crawler that handles 5 million pages without getting blocked, crashing, or entering infinite loops requires a sophisticated distributed architecture based on the Producer-Consumer Pattern.
In a monolithic script, crawling is recursive: visit(url) -> find_links() -> visit(links)
In serverless: deep recursion = stack overflows and timeout errors
Flatten recursion into a Queue-Based Architecture where work discovery is decoupled from work execution.
While modal.map allows parallel execution over a list, it is static -
it expects inputs to be known beforehand. A crawler is dynamic: parsing Page A reveals
Pages B and C. The Queue pattern is essential because it allows the workload to expand during runtime.
A naive crawler scaling to 500 containers resembles a DDoS attack. We implement domain-based sharding:
Pull 5GB image, load PyTorch model weights into GPU memory
Container snapshot mounted over network, lazy loading on demand
GPUs are throughput devices, not latency devices. Sending one document at a time is inefficient due to CPU-to-GPU data transfer overhead.
The vectors produced by GPU workers need a home. We analyze two leading contenders and their integration strategies for the serverless pipeline.
Vectors stored in blob storage, loaded into index only when needed
Write Parquet files to S3, Pinecone ingests asynchronously
Dense vectors + BM25 sparse vectors for keyword matching
Run as managed cloud or self-hosted in Modal Sandbox
Disable graph rebalancing during bulk upload, force optimization after
Deep integration with QdrantVectorStore for metadata filtering
Hierarchical Navigable Small World graphs enable fast approximate nearest neighbor search:
Understanding the algorithms behind vector search is crucial for optimizing performance. The two primary approaches - IVF (Inverted File) and HNSW (Hierarchical Navigable Small World) - offer different trade-offs between speed, accuracy, and memory usage.
IVF partitions the vector space into clusters using k-means. During search, only the nearest clusters are searched, dramatically reducing comparisons.
Run k-means on sample vectors to create centroids
Assign each vector to its nearest centroid's bucket
Find nearest centroids, then search only those buckets
nlist - Number of clusters (typically sqrt(n))nprobe - Clusters to search at query timeHNSW builds a multi-layer graph where each layer has exponentially fewer nodes. Search starts at the top sparse layer and greedily descends to find nearest neighbors.
Start at a random node in the topmost layer
Move to the neighbor closest to query vector
When stuck at local minimum, descend to next layer
Exhaustive search in bottom layer for final candidates
M - Max connections per node (16-64)efConstruction - Build-time search widthefSearch - Query-time search width| Operation | IVF | HNSW |
|---|---|---|
| Build Time | O(n * k * iterations) | O(n * log(n) * M) |
| Search Time | O(nprobe * n/nlist) | O(log(n) * efSearch) |
| Memory | O(n * d + k * d) | O(n * (d + M * layers)) |
| Insert (Online) | O(k) | O(log(n) * M) |
Click on each operation to see the iterative flow and Python implementation.
# IVF Build - K-means clustering
import numpy as np
def ivf_build(vectors, k=100, max_iter=20):
n, d = vectors.shape
# Initialize k centroids randomly
centroids = vectors[np.random.choice(n, k, replace=False)]
for iteration in range(max_iter): # O(iterations)
# Assign each vector to nearest centroid
assignments = []
for i in range(n): # O(n)
distances = []
for j in range(k): # O(k)
dist = np.linalg.norm(vectors[i] - centroids[j])
distances.append(dist)
assignments.append(np.argmin(distances))
# Update centroids
for j in range(k):
cluster_vecs = vectors[np.array(assignments) == j]
if len(cluster_vecs) > 0:
centroids[j] = cluster_vecs.mean(axis=0)
return centroids, assignments
# Total: O(n * k * iterations)
# HNSW Build - Hierarchical graph construction
import random
import heapq
def hnsw_build(vectors, M=16, ef_construction=200):
n = len(vectors)
graph = {i: {layer: [] for layer in range(max_layer(i))}
for i in range(n)}
for i in range(n): # O(n) - insert each vector
level = random_level() # Usually 0, rarely higher
# Find entry point at top layer
entry = find_entry_point()
for layer in range(level, -1, -1): # O(log(n)) layers
# Find M nearest neighbors at this layer
neighbors = search_layer(
vectors[i], entry, ef_construction, layer
)
# Connect to M nearest neighbors
for neighbor in neighbors[:M]: # O(M) connections
graph[i][layer].append(neighbor)
graph[neighbor][layer].append(i)
entry = neighbors[0] # Best neighbor for next layer
return graph
# Total: O(n * log(n) * M)
# IVF Search - Cluster-based retrieval
def ivf_search(query, centroids, inverted_lists, nprobe=8, k=10):
# Step 1: Find nprobe nearest clusters
cluster_distances = []
for j, centroid in enumerate(centroids): # O(nlist)
dist = np.linalg.norm(query - centroid)
cluster_distances.append((dist, j))
# Sort and take top nprobe clusters
cluster_distances.sort()
probe_clusters = [c[1] for c in cluster_distances[:nprobe]]
# Step 2: Search within selected clusters
candidates = []
for cluster_id in probe_clusters: # O(nprobe)
vectors_in_cluster = inverted_lists[cluster_id]
# Each cluster has ~n/nlist vectors
for vec_id, vector in vectors_in_cluster: # O(n/nlist)
dist = np.linalg.norm(query - vector)
candidates.append((dist, vec_id))
# Return top-k results
candidates.sort()
return candidates[:k]
# Total: O(nprobe * n/nlist)
# HNSW Search - Greedy layer-by-layer traversal
def hnsw_search(query, graph, vectors, ef_search=64, k=10):
# Start at top layer with entry point
entry_point = 0 # Usually node 0
current_best = entry_point
# Traverse from top layer down
for layer in range(max_layer, -1, -1): # O(log(n)) layers
# Greedy search at this layer
changed = True
while changed:
changed = False
# Check all neighbors of current best
for neighbor in graph[current_best][layer]: # O(M)
dist = np.linalg.norm(query - vectors[neighbor])
if dist < np.linalg.norm(query - vectors[current_best]):
current_best = neighbor
changed = True
# At layer 0: expand search with efSearch candidates
candidates = []
visited = {current_best}
heap = [(np.linalg.norm(query - vectors[current_best]), current_best)]
while heap and len(candidates) < ef_search:
dist, node = heapq.heappop(heap)
candidates.append((dist, node))
for neighbor in graph[node][0]:
if neighbor not in visited:
visited.add(neighbor)
heapq.heappush(heap,
(np.linalg.norm(query - vectors[neighbor]), neighbor))
return sorted(candidates)[:k]
# Total: O(log(n) * efSearch)
# IVF Memory Calculation
def ivf_memory_usage(n_vectors, dimension, n_clusters, dtype='float32'):
bytes_per_float = 4 if dtype == 'float32' else 2
# Original vectors: n * d
vectors_memory = n_vectors * dimension * bytes_per_float
# Cluster centroids: k * d
centroids_memory = n_clusters * dimension * bytes_per_float
# Inverted lists (cluster assignments): n * 4 bytes (int32)
assignments_memory = n_vectors * 4
total = vectors_memory + centroids_memory + assignments_memory
print(f"Vectors: {vectors_memory / 1e9:.2f} GB")
print(f"Centroids: {centroids_memory / 1e6:.2f} MB")
print(f"Total: {total / 1e9:.2f} GB")
return total
# Example: 5M vectors, 1024 dims, 4096 clusters
ivf_memory_usage(5_000_000, 1024, 4096)
# Vectors: 20.48 GB
# Centroids: 16.78 MB
# Total: 20.50 GB
# HNSW Memory Calculation
import math
def hnsw_memory_usage(n_vectors, dimension, M=16, ml=0.36):
bytes_per_float = 4
bytes_per_int = 4
# Original vectors: n * d
vectors_memory = n_vectors * dimension * bytes_per_float
# Average number of layers per node
avg_layers = 1 / (1 - ml) # ~1.56 for ml=0.36
# Graph connections: each node has M connections per layer
# Layer 0: 2*M connections (bidirectional)
# Higher layers: M connections
links_per_node = (2 * M) + (avg_layers - 1) * M
graph_memory = n_vectors * links_per_node * bytes_per_int
total = vectors_memory + graph_memory
print(f"Vectors: {vectors_memory / 1e9:.2f} GB")
print(f"Graph: {graph_memory / 1e9:.2f} GB")
print(f"Total: {total / 1e9:.2f} GB")
return total
# Example: 5M vectors, 1024 dims, M=16
hnsw_memory_usage(5_000_000, 1024, M=16)
# Vectors: 20.48 GB
# Graph: 0.94 GB
# Total: 21.42 GB (slightly more than IVF)
# IVF Online Insert - Fast cluster assignment
def ivf_insert(vector, centroids, inverted_lists, vector_id):
# Find nearest cluster: O(k)
min_dist = float('inf')
best_cluster = 0
for j, centroid in enumerate(centroids): # O(k) comparisons
dist = np.linalg.norm(vector - centroid)
if dist < min_dist:
min_dist = dist
best_cluster = j
# Add to inverted list: O(1)
inverted_lists[best_cluster].append((vector_id, vector))
return best_cluster
# Example: Insert 1000 new vectors
for i, vec in enumerate(new_vectors):
cluster = ivf_insert(vec, centroids, inverted_lists, i)
print(f"Vector {i} -> Cluster {cluster}")
# Each insert: O(k) where k = number of clusters
# HNSW Online Insert - Graph extension
def hnsw_insert(vector, vector_id, graph, vectors, M=16, ef=200):
# Determine max layer for new node (exponential decay)
ml = 0.36 # Layer multiplier
level = int(-math.log(random.random()) * ml)
# Initialize empty adjacency lists
graph[vector_id] = {l: [] for l in range(level + 1)}
vectors[vector_id] = vector
entry_point = get_entry_point()
# Navigate from top layer down: O(log(n))
for layer in range(get_max_layer(), level, -1):
entry_point = greedy_search(vector, entry_point, layer)
# Insert at each layer from level down to 0
for layer in range(min(level, get_max_layer()), -1, -1):
# Find ef nearest neighbors: O(ef)
neighbors = search_layer(vector, entry_point, ef, layer)
# Select M best neighbors
selected = select_neighbors(vector, neighbors, M)
# Create bidirectional connections: O(M)
for neighbor in selected:
graph[vector_id][layer].append(neighbor)
graph[neighbor][layer].append(vector_id)
# Prune if neighbor has too many connections
if len(graph[neighbor][layer]) > M:
graph[neighbor][layer] = prune_connections(
neighbor, graph[neighbor][layer], M
)
entry_point = neighbors[0]
return level
# Total: O(log(n) * M) for navigation + connections
from qdrant_client import QdrantClient
from qdrant_client.models import (
VectorParams, Distance, HnswConfigDiff,
OptimizersConfigDiff, PointStruct
)
# Initialize client
client = QdrantClient(host="localhost", port=6333)
# Create collection with optimized HNSW settings
client.create_collection(
collection_name="docuverse",
vectors_config=VectorParams(
size=1536, # OpenAI ada-002 dimensions
distance=Distance.COSINE
),
hnsw_config=HnswConfigDiff(
m=16, # Connections per node
ef_construct=100, # Build-time search width
full_scan_threshold=10000 # Use HNSW when > 10k vectors
),
optimizers_config=OptimizersConfigDiff(
indexing_threshold=20000, # Start indexing after 20k points
memmap_threshold=50000 # Use memory mapping for large data
)
)
# Upsert vectors with payload
points = [
PointStruct(
id=idx,
vector=embedding,
payload={
"url": doc.url,
"title": doc.title,
"chunk_id": chunk_id
}
)
for idx, (embedding, doc, chunk_id) in enumerate(data)
]
client.upsert(
collection_name="docuverse",
points=points,
wait=True
)
# Search with HNSW parameters
results = client.search(
collection_name="docuverse",
query_vector=query_embedding,
limit=10,
search_params={
"hnsw_ef": 128, # Query-time search width (higher = better recall)
"exact": False # Use ANN, not exact search
},
with_payload=True,
score_threshold=0.7 # Minimum similarity
)
# Filter search with metadata
filtered_results = client.search(
collection_name="docuverse",
query_vector=query_embedding,
query_filter={
"must": [
{"key": "category", "match": {"value": "python"}}
],
"must_not": [
{"key": "deprecated", "match": {"value": True}}
]
},
limit=5
)
from pinecone import Pinecone, ServerlessSpec
import os
# Initialize Pinecone client
pc = Pinecone(api_key=os.environ["PINECONE_API_KEY"])
# Create serverless index
pc.create_index(
name="docuverse-prod",
dimension=1536,
metric="cosine",
spec=ServerlessSpec(
cloud="aws",
region="us-east-1"
)
)
# Get index reference
index = pc.Index("docuverse-prod")
# Upsert vectors with metadata
vectors = [
{
"id": f"doc_{i}",
"values": embedding,
"metadata": {
"url": doc.url,
"title": doc.title,
"source": doc.source,
"updated_at": doc.timestamp
}
}
for i, (embedding, doc) in enumerate(data)
]
# Batch upsert (max 100 vectors per batch)
for i in range(0, len(vectors), 100):
batch = vectors[i:i+100]
index.upsert(vectors=batch, namespace="production")
# Dense vector search
results = index.query(
vector=query_embedding,
top_k=10,
include_metadata=True,
namespace="production"
)
# Hybrid search (dense + sparse)
from pinecone_text.sparse import BM25Encoder
# Initialize BM25 for sparse vectors
bm25 = BM25Encoder()
bm25.fit(corpus) # Fit on your document corpus
# Create sparse vector from query
sparse_query = bm25.encode_queries(query_text)
# Hybrid query with alpha weighting
results = index.query(
vector=query_embedding, # Dense vector
sparse_vector=sparse_query, # Sparse (BM25) vector
top_k=50,
include_metadata=True,
filter={
"source": {"$in": ["official", "docs"]},
"updated_at": {"$gte": "2024-01-01"}
}
)
# Bulk import from S3 (for millions of vectors)
index.start_import(
uri="s3://docuverse-bucket/embeddings/",
integration_id="s3-integration",
error_mode="continue" # Skip failed records
)
import faiss
import numpy as np
# Configuration
dimension = 1536
n_vectors = 5_000_000
n_clusters = int(np.sqrt(n_vectors)) # ~2236 clusters
# Training data (sample 10% for k-means)
train_size = min(500_000, n_vectors // 10)
train_vectors = vectors[:train_size].astype('float32')
# Option 1: IVF with Flat (exact search within clusters)
quantizer = faiss.IndexFlatL2(dimension)
index_ivf = faiss.IndexIVFFlat(
quantizer, dimension, n_clusters, faiss.METRIC_L2
)
# Train the index (k-means clustering)
index_ivf.train(train_vectors)
print(f"Index trained: {index_ivf.is_trained}")
# Add vectors
index_ivf.add(all_vectors.astype('float32'))
# Search parameters
index_ivf.nprobe = 64 # Search 64 clusters (higher = better recall)
# Option 2: IVF with Product Quantization (compressed)
# PQ splits vector into subvectors and quantizes each
m = 96 # Number of subquantizers
bits = 8 # Bits per subquantizer code
index_ivfpq = faiss.IndexIVFPQ(
quantizer, dimension, n_clusters, m, bits
)
index_ivfpq.train(train_vectors)
index_ivfpq.add(all_vectors.astype('float32'))
# Memory comparison
print(f"IVF Flat memory: {index_ivf.ntotal * dimension * 4 / 1e9:.2f} GB")
print(f"IVF PQ memory: {index_ivfpq.ntotal * m / 1e9:.2f} GB")
# Search
query = query_embedding.reshape(1, -1).astype('float32')
distances, indices = index_ivf.search(query, k=10)
# Option 3: HNSW in FAISS (for comparison)
index_hnsw = faiss.IndexHNSWFlat(dimension, 32) # M=32
index_hnsw.hnsw.efConstruction = 200
index_hnsw.hnsw.efSearch = 128
index_hnsw.add(all_vectors.astype('float32'))
distances, indices = index_hnsw.search(query, k=10)
# GPU acceleration (if available)
if faiss.get_num_gpus() > 0:
gpu_index = faiss.index_cpu_to_gpu(
faiss.StandardGpuResources(),
0, # GPU device ID
index_ivf
)
distances, indices = gpu_index.search(query, k=10)
Click on a card to see more details
Query sent to the same embedding function used for indexing.
LangChain queries Pinecone with vector + BM25 filters.
updated_at > 1 year agoRe-rank candidates with Cross-Encoder on Modal GPU.
Apply authority boost with PageRank-style scoring.
Final = (Sim * 0.8) + (Authority * 0.2)In a system processing millions of items, 0.1% will fail. Failed items are serialized with error traceback and pushed to DLQ for later inspection or retry.
try:
process(item)
except Exception as e:
dlq.put({"input": item, "error": str(e)})
Document IDs generated deterministically: sha256(url).
If a worker crashes after writing to Pinecone but before acknowledging,
the retry simply overwrites with identical data.
Track tokens processed by embedding function. If daily spend exceeds threshold ($50), the seed_injector is disabled until next billing cycle.
| Component | Kubernetes (EKS) | DocuVerse (Modal) | Savings |
|---|---|---|---|
| Compute (Crawler) | $450/mo | $42/mo | 90% |
| Compute (GPU) | $2,200/mo | $150/mo | 93% |
| Vector DB | $300/mo | $45/mo | 85% |
| DevOps Labor | 10 hrs/mo | 1 hr/mo | 90% |
| Total | ~$2,950 | ~$237 | 92% |
Complete source code for the DocuVerse engine, structured as a Modal application package.
from dataclasses import dataclass
from typing import List, Optional
# Constants
QUEUE_NAME = "docuverse-frontier"
DICT_NAME = "docuverse-visited"
EMBED_QUEUE = "docuverse-embeddings"
LINK_MATRIX_QUEUE = "docuverse-matrix"
@dataclass
class Document:
url: str
content: str
title: str
links: List[str]
doc_hash: str
metadata: dict
@dataclass
class VectorRecord:
id: str
values: List[float]
metadata: dict
import modal
import hashlib
from .common import Document, QUEUE_NAME, DICT_NAME, EMBED_QUEUE, LINK_MATRIX_QUEUE
# Define the container image with necessary scraping libraries
crawler_image = modal.Image.debian_slim().pip_install(
"beautifulsoup4", "requests"
)
app = modal.App("docuverse-crawler")
# Persistent State
frontier_queue = modal.Queue.from_name(QUEUE_NAME, create_if_missing=True)
visited_db = modal.Dict.from_name(DICT_NAME, create_if_missing=True)
embed_queue = modal.Queue.from_name(EMBED_QUEUE, create_if_missing=True)
matrix_queue = modal.Queue.from_name(LINK_MATRIX_QUEUE, create_if_missing=True)
@app.function(image=crawler_image, concurrency_limit=300)
def fetch_url(url: str):
import requests
from bs4 import BeautifulSoup
# Idempotency check
if url in visited_db:
return
try:
response = requests.get(url, timeout=5)
if response.status_code != 200:
return
soup = BeautifulSoup(response.text, 'html.parser')
# 1. Extract Content
text = soup.get_text()
title = soup.title.string if soup.title else url
doc_hash = hashlib.sha256(text.encode()).hexdigest()
# 2. Extract Matrix Links (Graph Edges)
links = [a.get('href') for a in soup.find_all('a', href=True)]
normalized_links = [l for l in links if l.startswith('http')]
doc = Document(
url=url,
content=text[:5000], # Truncate for demo
title=title,
links=normalized_links,
doc_hash=doc_hash,
metadata={"source": "crawler"}
)
# 3. Mark as visited
visited_db[url] = {"hash": doc_hash, "status": "processed"}
# 4. Dispatch for Processing
embed_queue.put(doc)
matrix_queue.put({"source": url, "targets": normalized_links})
# 5. Expand Frontier
for link in normalized_links:
if link not in visited_db:
frontier_queue.put(link)
except Exception as e:
print(f"Failed to crawl {url}: {e}")
@app.function(schedule=modal.Cron("0 2 * * *"))
def seed_injector():
"""Daily job to restart the crawl from root nodes."""
roots = ["https://docs.python.org/3/", "https://react.dev"]
for url in roots:
frontier_queue.put(url)
import modal
from typing import List
from .common import Document, VectorRecord, EMBED_QUEUE
# Define a GPU-enabled image with PyTorch and Transformers
gpu_image = (
modal.Image.debian_slim()
.pip_install("torch", "transformers", "sentence-transformers")
)
app = modal.App("docuverse-embedder")
@app.cls(gpu="A10G", image=gpu_image, container_idle_timeout=300)
class ModelService:
def __enter__(self):
from sentence_transformers import SentenceTransformer
# Load model once when container starts (Cold Start optimization)
self.model = SentenceTransformer('intfloat/multilingual-e5-large')
@modal.method()
def embed_batch(self, docs: List[Document]) -> List[VectorRecord]:
texts = [d.content for d in docs]
# Generate dense vectors
embeddings = self.model.encode(texts, normalize_embeddings=True)
records = []
for doc, emb in zip(docs, embeddings):
records.append(VectorRecord(
id=doc.doc_hash,
values=emb.tolist(),
metadata={"url": doc.url, "title": doc.title}
))
return records
@app.function(image=modal.Image.debian_slim())
def batch_coordinator():
"""Reads from queue, batches items, and sends to GPU."""
embed_queue = modal.Queue.from_name(EMBED_QUEUE)
service = ModelService()
BATCH_SIZE = 64
while True:
try:
items = embed_queue.get_many(BATCH_SIZE, block=True, timeout=5.0)
if not items:
break
# Invoke GPU function
vectors = service.embed_batch.remote(items)
# Send vectors to Pinecone
# pinecone_upload.remote(vectors)
except Exception:
break
import modal
import os
app = modal.App("docuverse-vectordb")
@app.function(
secrets=[modal.Secret.from_name("pinecone-secret"),
modal.Secret.from_name("aws-secret")]
)
def bulk_upsert(parquet_file_path: str):
from pinecone import Pinecone
import boto3
# 1. Upload Parquet to S3
s3 = boto3.client('s3')
bucket = "docuverse-ingest-bucket"
key = f"imports/{os.path.basename(parquet_file_path)}"
s3.upload_file(parquet_file_path, bucket, key)
# 2. Trigger Pinecone Import
pc = Pinecone(api_key=os.environ["PINECONE_API_KEY"])
idx = pc.Index("docuverse-prod")
# Start async import
idx.start_import(
uri=f"s3://{bucket}/{key}",
integration_id="s3-integration-id"
)
print("Bulk import started.")
Official introduction to serverless GPU compute with Modal Labs
Complete guide to Retrieval-Augmented Generation with LangChain
Understanding Hierarchical Navigable Small World graphs
Learn ChromaDB, Pinecone & Weaviate for Generative AI
Hierarchical Navigable Small World with Faiss (Python)
Complete guide to vector indexing methods and when to use each
Data Ingestion to Vector Store with LangChain
Building document processing chatbots with vector databases
PGVector vs Pinecone vs Redis comparison
Complete guide to serverless GPU compute
Vector database setup and best practices
Open-source vector search engine
Building LLM applications and RAG pipelines
Multilingual text embedding model
Python framework for embeddings
Malkov & Yashunin - The foundational paper on HNSW algorithm
Comprehensive benchmarking framework for vector search algorithms
Recent analysis on HNSW graph structure and hub nodes
Lewis et al. - The original RAG paper from Facebook AI
H. Chang & S. Uhlig - American Institute of Mathematical Sciences
Modal Blog - Container optimization techniques
Modal Docs - Distributed data structures
Modal Docs - Horizontal scaling strategies
Modal Docs - Organizing Modal applications
Databricks - Vector database fundamentals
IBM - Comprehensive overview of vector databases
Elastic - Vector database concepts and applications
Pinecone Docs - Serverless vector database architecture
Pinecone Docs - Getting started guide
Pinecone Docs - Vector indexing strategies
Pinecone Blog - Future of vector databases
Qdrant - Open-source vector search engine overview
Qdrant Blog - Database comparison
Qdrant Docs - Scaling Qdrant clusters
Qdrant Blog - Managed vector database deployment options
IBM - Understanding vector embeddings
Elastic - Comprehensive vector embeddings guide
TigerData - Introduction to embeddings
Stanford NLP - Pre-trained word vectors
Wikipedia - High-dimensional space challenges
Medium - Deep dive into HNSW algorithm
Zilliz Learn - HNSW explained
Pinecone Learn - HNSW with FAISS
TiDB - Comparison of ANN algorithms
MyScale - Index performance comparison
Benchmarking tool for approximate nearest neighbor algorithms
Benchmarks of approximate nearest neighbor libraries in Python
ANN-Benchmarks - GloVe dataset benchmark results
FAISS Wiki - Large-scale vector indexing
Google Cloud - Performance comparison
Zilliz Blog - Algorithm comparison
LangChain Docs - Qdrant vector store
LangChain Python - Qdrant integration guide
Qdrant Tutorial - Getting started with semantic search
Packt - Hands-on tutorial
Medium - Advanced RAG techniques
Databricks on AWS - Enterprise vector search
AWS News Blog - Vector database performance improvements
SkySQL - Instant, scalable & fast vector storage
The New Stack - Architecture evolution
Trantor - Comprehensive Pinecone guide
ThatWare - Next Gen with Hyper-Intelligence
NetApp Instaclustr - From traditional to next-gen applications
AIMultiple Research - Industry applications
Microsoft Learn - Enterprise data solutions